Limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit
نویسندگان
چکیده
We consider the double scaling limit in the random matrix ensemble with an external source 1 Zn e−nTr( 1 2 M −AM)d M defined on n×n Hermitian matrices, where A is a diagonal matrix with two eigenvalues ±a of equal multiplicities. The value a = 1 is critical since the eigenvalues of M accumulate as n → ∞ on two intervals for a > 1 and on one interval for 0 < a < 1. These two cases were treated in Parts I and II, where we showed that the local eigenvalue correlations have the universal limiting behavior known from unitary random matrix ensembles. For the critical case a = 1 new limiting behavior occurs which is described in terms of Pearcey integrals, as shown by Brézin and Hikami, and Tracy and Widom. We establish this result by applying the Deift/Zhou steepest descent method to a 3×3-matrix valued Riemann-Hilbert problem which involves the construction of a local parametrix out of Pearcey integrals. We resolve the main technical issue of matching the local Pearcey parametrix with a global outside parametrix by modifying an underlying Riemann surface.
منابع مشابه
LARGE n LIMIT OF GAUSSIAN RANDOM MATRICES WITH EXTERNAL SOURCE, PART III: DOUBLE SCALING LIMIT
We consider the double scaling limit in the random matrix ensemble with an external source 1 Zn e −nTr( 1 2 M 2 −AM) dM defined on n×n Hermitian matrices, where A is a diagonal matrix with two eigenvalues ±a of equal multiplicities. The value a = 1 is critical since the eigenvalues of M accumulate as n → ∞ on two intervals for a > 1 and on one interval for 0 < a < 1. These two cases were treate...
متن کاملThe birth of a cut in unitary random matrix ensembles
We study unitary random matrix ensembles in the critical regime where a new cut arises away from the original spectrum. We perform a double scaling limit where the size of the matrices tends to infinity, but in such a way that only a bounded number of eigenvalues is expected in the newborn cut. It turns out that limits of the eigenvalue correlation kernel are given by Hermite kernels correspond...
متن کاملLarge n Limit of Gaussian Random Matrices with External Source , Part I
We consider the random matrix ensemble with an external source 1 Zn e−nTr( 1 2M −AM)dM defined on n×n Hermitian matrices, where A is a diagonal matrix with only two eigenvalues ±a of equal multiplicity. For the case a > 1, we establish the universal behavior of local eigenvalue correlations in the limit n → ∞, which is known from unitarily invariant random matrix models. Thus, local eigenvalue ...
متن کامل7 N ov 2 00 5 Double scaling limit for matrix models with non analytic potentials
We prove the existence of the double scaling limit for unitary invariant ensembles of random matrices with non analytic potentials. The limiting reproducing kernel is expressed in terms of solutions of the Dirac system of differential equations with a potential defined by the Hastings-McLeod solution of the Painleve II equation. Our approach is based on the construction of the perturbation expa...
متن کاملOne-dimensional stochastic growth and Gaussian ensembles of random matrices
In this review paper we consider the polynuclear growth (PNG) model in one spatial dimension and its relation to random matrix ensembles. For curved and flat growth the scaling functions of the surface fluctuations coincide with limit distribution functions coming from certain Gaussian ensembles of random matrices. This connection can be explained via point processes associated to the PNG model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007